电子行业深度研究报告:Scaling law依然有效,自研AI芯片后劲十足

一、大模型Scaling仍在持续,推动大规模并行计算
(一)GPU与深度学习相辅相成,开启新一轮AI浓湘
深度学习开启新一轮AI浓湖,大模型接续发力。2006年图灵奖得主Hinton在《Science》
提出了深度神经网络,批起了基于深度学习的断一轮AI浪潮,奠定了大模型发展的基础。深度学习兴起的背景是计算能力的提高和大数据时代的到临,能够让机器自动地从原始数据中学习。从原始数据中提取高层次、抽象的特征是非常困难的。深度学习另辟蹊径,让计算机通过比较简单概念来构建复杂的概念,能够让计算机从经验和数据中得到提高的技术,在计算机视觉、自然语言处理等领域取得了一定的成果。深度学习早期主要用于解决机器学习中的表示学习的问题,但是由于其强大的能力,逐渐被用于解决一些通用人工智能的问题,如推理、决策等,当前主流的大模型技术本质上是由深度学习的延伸发展而来的。

本文来自知之小站

 

PDF报告已分享至知识星球,微信扫码加入立享3万+精选资料,年更新1万+精选报告

(星球内含更多专属精选报告.其它事宜可联系zzxz_88@163.com)